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Abstract 

Since the start of the century, bauxite residue has received re-occurring attention as a potential 

material for carbon capture and storage. While several studies have explored this possibility, 

a comprehensive evaluation of the underlying chemistry, technical implications and economic 

viability for the alumina industry has been lacking. This paper, commissioned by the International 

Aluminium Institute, addresses these aspects, particularly in the context of securing carbon credits 

to offset emissions penalties. A typical bauxite residue mineralises approximately 12 kg CO2 per 

tonne of dry bauxite residue solids (BR), equating to about 1.5 % of an alumina refinery’s carbon 

footprint. A review of the chemistry of CO2 capture and CO2 mineral sequestration shows that 

typically two-thirds of the CO2 initially absorbed is not mineralised and cannot be mineralised 

economically, creating a two-fold problem for alumina refiners. Firstly, two-thirds of the flue gas 

compression energy is wasted and secondly, the heavily carbonated residue liquor cannot be 

returned to the Bayer process untreated. The Scope 2 CO2 emissions associated with compression 

energy consume a substantial fraction of the amount of CO2 mineralised. Even without 

considering Scope 2 emissions, both the operating cost and the capital cost would be prohibitive 

on their own at the commonly used carbon credit projections at or around 100 USD/t CO2. 

A carbon credit value of at least 700 USD/t CO2 is required for the economics to break even. 

More viable opportunities exist in carbonating lime waste products separate from the residue. The 

paper discusses important aspects of the chemistry, such as pH rebound, chemical soda loss 

recovery potential, release of fluoride from tri-calcium aluminate, and operating preferably under 

reduced carbonation reactor operating pressure and reduced liquor/solids ratio. 
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1. Introduction

Contacting bauxite residue with CO2 has been the subject of various studies over the past few 

decades. In some cases, and in two PhD studies, the primary objective was assessing the potential 

contribution to the effort of reducing global warming [1–3]. In other studies, this was a secondary 

objective with the main focus being e.g. residue neutralisation [4], more efficient revegetation [5], 

chemical soda loss recovery [6] or metals recovery [7]. Alcoa had operated a bauxite residue 

carbonation unit on an industrial scale at Kwinana from 2008 for a few years using CO2 rich waste 

gas from a nearby ammonia plant [8]. This was done to improve residue disposal management, 

while recognising the benefit of reducing the carbon impact of the operation on the climate. 

It is widely recognised that bauxite residue can capture and mineralise CO2. However, the studies 

published so far present only a fragmented picture. No conclusions have been drawn yet if bauxite 

residue carbonation is a viable proposition. The alumina industry has embarked on a program of 
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decarbonisation initiatives. It is of interest to the industry to know the impact of bauxite residue 

carbonation within the overall scheme of initiatives and if indeed bauxite residue carbonation is 

economically feasible in the first place. The International Aluminium Institute (IAI) 

commissioned a study to provide answers to these questions; this paper summarises the main 

conclusions from this study. 

 

Understanding the carbonation chemistry is of crucial importance, as it is the basis for establishing 

(a) the quantity of CO2 being captured, (b) the quantity of CO2 being mineralised, (c) the key 

carbonation process design criteria and (d) any potential effects there may be on the Bayer 

process. These factors ultimately determine the cost incurred per net tonne of CO2 mineralised, 

being the difference between the amount of CO2 permanently stored in the residue and the amount 

of CO2 emitted to the atmosphere due to the effort to accomplish this. The potential economic 

rewards are the carbon credits obtained.  

 

2. Carbon Credits 

 

Carbon credits can only be claimed when certain conditions are met according to the certification 

requirements in the applicable country. Carbon credits trading has been established in many 

economies around the globe, although structure and implementation is not uniform. Schemes vary 

between being voluntary and being compliance-based. The schemes in the EU and in Australia 

are compliance-based and are amongst the most developed schemes in the world. Furthermore, 

with the EU and Australia having well established alumina production facilities, the focus on 

certification requirements has been directed to those regions in the present study. 

 

In the EU, legislation exists for geological storage of CO2 but this concerns underground storage 

[11]. Legislation is under development for ground level storage, but the proposals so far are 

focused on agricultural and forestry projects and do not include storage in mine waste [12]. 

Australia is one step further since new legislation appears to apply also to ground level storage in 

mine waste streams [13]. The legislation distinguishes between 100-year and 25-year permanence 

projects. In the present study, the projected value of these carbon credits is assumed to be 

100 USD/t CO2. 

 

Common to the EU and Australian regulations are some strict criteria for carbon storage 

certification. In the EU, these criteria are known as the “QU.A.L.ITY” criteria [14]: 

1. QU: QUanitification 

Carbon removal activities need to deliver unambiguous benefits for the climate and be 

measured, monitored and reported accurately. Note that monitoring means monitoring 

for leakage and that this also needs to continue for a long time after storage closure. 

2. A: Additionality 

Carbon removal activities need to go beyond existing practices and what is required by 

law. Note that this implies that any naturally occurring carbonation is excluded and 

needs be deducted from actively achieved carbonation. 

3. L: Long-term Storage 

Certificates are linked to the duration of carbon storage and should ensure long-term 

storage. 

4. ITY: SustainabilITY 

Carbon removal activities must contribute to sustainability objectives such as climate 

change adaption, circular economy, water and marine resources and biodiversity. 

 

These criteria imply that certification requires ongoing monitoring and registration of the 

quantities of CO2 being mineralised and being maintained in storage. This requires periodic 

borehole sampling and analysis of the residue deposit area for establishing a baseline and for 

quantifying any losses over time. 
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make more sense to carbonate the waste lime streams that contain TCA rather than the entire 

bauxite residue stream to which these lime streams are added. Even better is to reduce the 

formation of TCA in the Bayer process all together since this will reduce the plant lime 

consumption and therewith the CO2 emissions of burning CaCO3 in lime kilns (chemically bound 

CO2 as well as fuel combustion CO2). 

 

From a process technical perspective as well as an economic perspective it appears best to design 

an alkaline waste CO2 mineral sequestration unit for the lowest practical pressure and lowest 

practical (e.g. with respect to agitation) L/S ratio. Dilution should always be avoided. 
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