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Since the start of the century, bauxite residue has received re-occurring attention as a potential
material for carbon capture and storage. While several studies have explored this possibility,
a comprehensive evaluation of the underlying chemistry, technical implications and economic
viability for the alumina industry has been lacking. This paper, commissioned by the International
Aluminium Institute, addresses these aspects, particularly in the context of securing carbon credits
to offset emissions penalties. A typical bauxite residue mineralises approximately 12 kg CO» per
tonne of dry bauxite residue solids (BR), equating to about 1.5 % of an alumina refinery’s carbon
footprint. A review of the chemistry of CO; capture and CO, mineral sequestration shows that
typically two-thirds of the CO; initially absorbed is not mineralised and cannot be mineralised
economically, creating a two-fold problem for alumina refiners. Firstly, two-thirds of the flue gas
compression energy is wasted and secondly, the heavily carbonated residue liquor cannot be
returned to the Bayer process untreated. The Scope 2 CO» emissions associated with compression
energy consume a substantial fraction of the amount of CO, mineralised. Even without
considering Scope 2 emissions, both the operating cost and the capital cost would be prohibitive
on their own at the commonly used carbon credit projections at or around 100 USD/t COs,.
A carbon credit value of at least 700 USD/t CO: is required for the economics to break even.
More viable opportunities exist in carbonating lime waste products separate from the residue. The
paper discusses important aspects of the chemistry, such as pH rebound, chemical soda loss
recovery potential, release of fluoride from tri-calcium aluminate, and operating preferably under
reduced carbonation reactor operating pressure and reduced liquor/solids ratio.

Keywords: Bauxite residue, Carbonation, CO» storage, Carbon credits, Economics.
1. Introduction

Contacting bauxite residue with CO, has been the subject of various studies over the past few
decades. In some cases, and in two PhD studies, the primary objective was assessing the potential
contribution to the effort of reducing global warming [ 1-3]. In other studies, this was a secondary
objective with the main focus being e.g. residue neutralisation [4], more efficient revegetation [5],
chemical soda loss recovery [6] or metals recovery [7]. Alcoa had operated a bauxite residue
carbonation unit on an industrial scale at Kwinana from 2008 for a few years using CO; rich waste
gas from a nearby ammonia plant [8]. This was done to improve residue disposal management,
while recognising the benefit of reducing the carbon impact of the operation on the climate.

It is widely recognised that bauxite residue can capture and mineralise CO,. However, the studies

published so far present only a fragmented picture. No conclusions have been drawn yet if bauxite
residue carbonation is a viable proposition. The alumina industry has embarked on a program of
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decarbonisation initiatives. It is of interest to the industry to know the impact of bauxite residue
carbonation within the overall scheme of initiatives and if indeed bauxite residue carbonation is
economically feasible in the first place. The International Aluminium Institute (IAI)
commissioned a study to provide answers to these questions; this paper summarises the main
conclusions from this study.

Understanding the carbonation chemistry is of crucial importance, as it is the basis for establishing
(a) the quantity of CO; being captured, (b) the quantity of CO, being mineralised, (c) the key
carbonation process design criteria and (d) any potential effects there may be on the Bayer
process. These factors ultimately determine the cost incurred per net tonne of CO, mineralised,
being the difference between the amount of CO, permanently stored in the residue and the amount
of CO; emitted to the atmosphere due to the effort to accomplish this. The potential economic
rewards are the carbon credits obtained.

2. Carbon Credits

Carbon credits can only be claimed when certain conditions are met according to the certification
requirements in the applicable country. Carbon credits trading has been established in many
economies around the globe, although structure and implementation is not uniform. Schemes vary
between being voluntary and being compliance-based. The schemes in the EU and in Australia
are compliance-based and are amongst the most developed schemes in the world. Furthermore,
with the EU and Australia having well established alumina production facilities, the focus on
certification requirements has been directed to those regions in the present study.

In the EU, legislation exists for geological storage of CO; but this concerns underground storage
[11]. Legislation is under development for ground level storage, but the proposals so far are
focused on agricultural and forestry projects and do not include storage in mine waste [12].
Australia is one step further since new legislation appears to apply also to ground level storage in
mine waste streams [13]. The legislation distinguishes between 100-year and 25-year permanence
projects. In the present study, the projected value of these carbon credits is assumed to be
100 USD/t CO,.

Common to the EU and Australian regulations are some strict criteria for carbon storage
certification. In the EU, these criteria are known as the “QU.A.L.ITY” criteria [14]:
1. QU: QUanitification
Carbon removal activities need to deliver unambiguous benefits for the climate and be
measured, monitored and reported accurately. Note that monitoring means monitoring
for leakage and that this also needs to continue for a long time after storage closure.
2. A: Additionality
Carbon removal activities need to go beyond existing practices and what is required by
law. Note that this implies that any naturally occurring carbonation is excluded and
needs be deducted from actively achieved carbonation.
3. L:Long-term Storage
Certificates are linked to the duration of carbon storage and should ensure long-term
storage.
4. ITY: SustainabillTY
Carbon removal activities must contribute to sustainability objectives such as climate
change adaption, circular economy, water and marine resources and biodiversity.

These criteria imply that certification requires ongoing monitoring and registration of the
quantities of CO, being mineralised and being maintained in storage. This requires periodic
borehole sampling and analysis of the residue deposit area for establishing a baseline and for
quantifying any losses over time.
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make more sense to carbonate the waste lime streams that contain TCA rather than the entire
bauxite residue stream to which these lime streams are added. Even better is to reduce the
formation of TCA in the Bayer process all together since this will reduce the plant lime
consumption and therewith the CO, emissions of burning CaCOs in lime kilns (chemically bound
CO; as well as fuel combustion COy).

From a process technical perspective as well as an economic perspective it appears best to design
an alkaline waste CO, mineral sequestration unit for the lowest practical pressure and lowest
practical (e.g. with respect to agitation) L/S ratio. Dilution should always be avoided.
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